
Overcoming tissue scattering in wide-field 
two-photon imaging by extended detection 
and computational reconstruction 

YUANLONG ZHANG,1,5 TIANKUANG ZHOU,1,2,5 XUEMEI HU,1 XINYANG LI,1,2 
HAO XIE,1 LU FANG,3 LINGJIE KONG,4,* AND QIONGHAI DAI

1 
1Department of Automation, Tsinghua University, Beijing 100084, China 
2Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China 
3Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518000, China 
4State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision 
Instrument, Tsinghua University, Beijing 100084, China 
5These authors contributed equally to this work. 
*konglj@tsinghua.edu.cn 

Abstract: Compared to point-scanning multiphoton microscopy, line-scanning temporal 
focusing microscopy (LTFM) is competitive in high imaging speed while maintaining tight 
axial confinement. However, considering its wide-field detection mode, LTFM suffers from 
shallow penetration depth as a result of the crosstalk induced by tissue scattering. In contrast 
to the spatial filtering based on confocal slit detection, here we propose the extended 
detection LTFM (ED-LTFM), the first wide-field two-photon imaging technique to extract 
signals from scattered photons and thus effectively extend the imaging depth. By recording a 
succession of line-shape excited signals in 2D and reconstructing signals under Hessian 
regularization, we can push the depth limitation of wide-field imaging in scattering tissues. 
We validate the concept with numerical simulations, and demonstrate the performance of 
enhanced imaging depth in in vivo imaging of mouse brains. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Benefiting from the inherent advantages in deep penetration, 3D sectioning capability, and 
low phototoxicity, multiphoton microscopy(MPM) has found great applications in biomedical 
studies, including neuroscience and immunology [1,2]. In conventional MPM, a tight focus is 
formed and thus multi-dimensional imaging is generally performed by scanning the focus. 
However, the inertia of mechanical scanners and the collected fluorescent signal for sufficient 
signal-to-noise ratio limit the imaging speed [3–5], which hampers the studies of most 
biological dynamics [6]. Recently, temporal focusing microscopy (TFM) has been proposed 
to achieve wide-field imaging while maintaining optical sectioning simultaneously [7,8]: by 
introducing an angular dispersion to the excitation femtosecond pulses with a dispersion 
component, a spatiotemporal focus is formed when different frequency components overlap at 
the focal plane of the objective lens. Current progress of TFM have demonstrated the 
confinement of two-photon wide-field excitation with decent axial resolutions [9]. Compared 
with the conventional point-scanning MPM, TFM enables high-speed imaging by parallel 
excitation [10,11]. Generally, there are two modalities: planar- excitation TFM [12–14] and 
line-scanning TFM [15,16]. In the former one, a planar region of the samples is excited in 
parallel; in the latter one, samples are excited by a sweeping line. In comparison, the axial 
focusing is weak in planar-excitation TFM, while LTFM exhibits better axial confinement 
and scattering resistance [17]. 

The good balance between imaging speed and axial resolution makes LTFM ideal for 
various applications, including laser processing [18] and large-scale imaging of biological 
dynamics [19]. To exploit the potential of LTFM in deep tissue imaging, Rowland et al have 
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employed longer wavelength for minimizing the scattering suffered by the excitation beam 
[20]; we have proposed the focal modulation technique to modulate the excitation beam for 
eliminating the fluorescence background [21], and the hybrid spatio-spectral coherent 
adaptive compensation technique to compensate the aberrations experienced by the excitation 
beam [22]. 

Even though various strategies of multi-photon excitation reduce the effects of scattering 
suffered by the excitation beam in TFM, as mentioned above, the crosstalk induced by tissue 
scattering of the emission fluorescence remains unsolved yet. Apparently, crosstalk of 
neighboring pixels in parallel readout via 2D sensors, such as sCMOS or EMCCD cameras, 
limits the signal-to-noise ratio (SNR) and the imaging depth in LTFM. To this end, confocal 
slit detection has recently been proposed [23,24] that exploits the same principle as that in 
confocal microscopy, where a confocal slit is conjugated to the line-shaped excitation for 
spatial filtering of the scattered fluorescence. In practice, “virtual” confocal slit can be 
realized by setting the readout of sCMOS camera in “rolling shutter” mode, which would 
filter out the crosstalk in the direction orthogonal to the line. Apparently, such a technique 
could resist the scattering induced crosstalk between excitation lines effectively, but it would 
fail to resist the crosstalk along the excitation lines. Moreover, in confocal slit detection, one 
would lose most part of fluorescent signals when the scattering is severe. 

Here we propose the extended detection LTFM (ED-LTFM), a technique that could 
maintain the signal contrast and resist to scattering-induced noise in deep tissue LTFM. A 2D 
fluorescent image is captured at each line-shape excitation position, so that the signals, 
including the scattered signals, are fully recorded. Then computational reconstruction is 
performed to recover the signals. Moreover, we incorporate Hessian regularization in the 
deconvolution, for the first time, which would ensure smooth transitions in the reconstructed 
images and thus reduce the artifacts induced by low SNR [25]. We demonstrate the enhanced 
performance of ED-LTFM in in vivo deep imaging of neurons in Thy1-YFP mouse brains 
and dynamic imaging of microglia in CX3CR1-GFP mouse brains. 

2. Imaging modeling 

As shown in Fig. 1(a), we denote one slice of the 3D sample as ( , ),f x y  where ( , )x y  is the 

lateral coordinates. ( , )f x y  is excited column by column (along x-axis) by steering the laser 

line formed by temporal focusing. In conventional LTFM, the shutter of camera keeps open 
when the line-shape excitation beam excites the sample from one end to the other. At each 
excitation position, temporal focused laser line excites the sample, while the emitted 
fluorescent signals go through the sample and the optical elements before being recorded by 
the camera. Unfortunately, the emitted fluorescent signals would suffer from tissue scattering, 
and photons from different excitation positions would mix in the sensor plane, as shown in 
Fig. 1(b). Consequently, the captured signals in wide-field detection (WD) LTFM thus could 
be written as 

 ( , ) ( ', ) ( ', ') ( ' ) ' 'WD y y yp x y h x x y e f x y y e dx dy deδ= − − −  (1) 

where h is the point spread function (PSF) of the system, ye  is the location of the line-shape 
excitation beam. The captured image ( , )WDp x y  would be susceptible to serious crosstalks 
along both x and y axes if h is largely affected by tissue scattering. 

For confocal slit detection (CSD), a detection slit is adopted to block the scattering 
photons. The captured signals by CSD then could be written as 

 ( , ) ( ', 0) ( ', ') ( ') ' 'CSDp x y h x x f x y y y dx dyδ= − −  (2) 
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Fig. 1. Illustrations of the ED-LTFM method. (a) The scattering PSF h makes the excitation 
line-shape signals overlapped along y-axis (direction of scanning) and blurred along x-axis 
(direction of excitation line). (b) Line-shape signals in conventional LTFM are integrated by 
the wide-field detection camera, thus are overlapped in both x- and y-axis. (c) A confocal slit is 
inserted before the sensor, which can reduce the crosstalk along y-axis but not the crosstalk 
along x-axis. (d) The extended detection (ED) technique records all of the signals, including 
scattering signals, for subsequent computational reconstruction, which could reduce cross talk 
along both along x- and y-axis. 

Even though the crosstalk along y-axis could be effectively reduced by the confocal slit 
detection, the crosstalk along x-axis remains, as shown in Fig. 1(c). Moreover, if scattering 
enlarges the PSF h, the confocal slit would cut the majority of the signals and affect the final 
imaging SNR. To suppress the effect of scattering along both x-axis and y-axis, we propose 
the ED-LTFM method that fully utilizes the crosstalk information to recover the original 
signals. 

More specifically, ED-LTFM acquires an image stack instead of a single image, for a 
single depth imaging: 
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 '( , , ) ( ', ) ( ', ') ( ' ) ' 'y yp x y e h x x y f x y y e dx dyδ= − −  (3) 

In other words, { '( , , )}yp x y e  is the set of images that are excited by the laser line at each 
excitation position, as shown in Fig. 1(d). To recover image ( , )f x y  from the captured
{ '( , , )},yp x y e  we propose the following optimization problem: 

 

2

2

1
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which is the Hessian regularization term. Here, μ  and λ  are weight parameters, and the 

subscript 1 and 2 represent L-1 norm and L-2 norm. 
Note that, in our model, the shift-invariance property of the PSF is employed, which is not 

obvious considering the complexity of tissue scattering. However, as presented in Section 
5.3.1, we validate that in deep tissue imaging, the scattering PSF is highly similar across the 
whole field of view (~80 μm). Thus the assumption of shift-invariance is feasible. 

 

Fig. 2. PSF fitting with different functions. (a) Fitting RMSE by H-G, Lorentz and Gaussian 
functions. The boxplot is measured from 25 different scattering sources. Red line: median. 
Bottom and top edges of the blue box: 25th and 75th percentiles. Fitting error of H-G is 
significantly smaller than the other two models (P<10−9 and P<10−10 respectively, by Student’s 
t-test). (b)(c)(d) Raw pixel intensity from the captured image of one point-like source (blue 
circle) and best fitting results by H-G function (b), Lorentz function (c), and Gaussian function 
(d). 
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3. Computational reconstruction 

3.1 Fitting of scattering PSF 

To solve Eq. (4), we need to calculate the PSF through curve fitting first. Numerical 
simulations have shown that the pattern induced by tissue scattering has the property of 
circular symmetry [26,27]. Furthermore, Henyey and Greenstein introduced a scattering 
function which describes scattering probability in relation to the scattering angle [28] 

 
2

3
2 2

1 1
( | )

4
[1 2 cos( )]

g
p g

g g

θ
π θ

−=
+ −

 (6) 

in which θ  and g  are the angle and anisotropy parameters, respectively. 

For PSF fitting, Eq. (6) should be changed into the imaging coordinate system. We 
replace the angular coordinateθ with coordinates ( , )x y  by introducing a parameter α  so that

2 2 2cos( ) .x yθ α α= + +  Eq. (6) could be reformulated as 
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where M is a normalizing constant that ensures the total intensity of the PSF is 1. Note that α
could be represented by the full width at half maximum (FWHM) of the PSF as 

 
2

2
2 23

2
2 ( ) 1

(1 ) 2 (1 )

FWHM

g

g g

α =
−

+ − −

 (8) 

The modelled PSF with parameters ( , )gα then could be fitted to the captured point-

source-like signals. Root Mean Square Error (RMSE) is chosen as the fitting metric. The best 
parameter combination is then used to generate the scattering PSF for the subsequent 
deconvolution process. 

We demonstrate the aforementioned process in Fig. 2. Similar to the guide star techniques 
employed in adaptive optics [29,30], we capture several small structures which locate at ~140 
μm under the dura in mouse brain in vivo and treat them as point sources. We then fit them 
with the proposed H-G function. Specifically, we first measure the dark noise of the camera 
(~103) and subtract this value from the raw data. Then we fit the data with the proposed H-G 
function and one of fitting results is shown in Fig. 2(b). 

We also show that H-G function would fit better compared to Lorentz function (Fig. 2(c)) 
and Gaussian function (Fig. 2(d)) with the same raw data. Furthermore, we plot the fitting 
error of 25 different point sources in RMSE in Fig. 2(a), which shows that H-G function leads 
a significant advance in statistics. We observe that the distribution of the PSF is heavy-tailed 
due to strong tissue scattering (raw pixels in Figs. 2(b)–2(d)), thus the PSF model needs to 
parameterize both the FWHM and the tail distribution. However, Lorentz function and 
Gaussian function are controlled by only one parameter, which makes them hard to fully 
characterize the scattering PSF in deep tissue imaging. This is why the Lorentz and Gaussian 
functions produce obvious fitting error in the “hump” part in Figs. 2(c) and 2(d). On the other 
hand, H-G function supports more flexible control of the scattering PSF and thus fits better. 
All the PSFs in the following content are modelled by H-G function with the same process as 
mentioned above. 
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3.2 Hessian regularized hybrid-deconvolution 

In this section, we formulate the deconvolution algorithm to solve the optimization problem 
described in Eq. (4) 

Firstly, we note 

 3 ( , , ) ( , ) ( )d y yf x y e f x e yδ=  (9) 

and 

 3 ( , , ) ( , ) ( )d y yh x y e h x y eδ=  (10) 

We can rewrite the Eq. (4) as 

 2
3 3 2 1arg min{ || ( * )( , , ) '( , , ) || | ( ) | }ED d d y yf

p f h x y e p x y e R fμ λ= − +  (11) 

where * denotes 3d convolution. 
We adopt the alternative direction method of multipliers (ADMM) [31] to solve the above 

problem. First, three new variables b1, b2, b3 are introduced and the equivalent minimization 
problem becomes 

 2
3 3 2 1 1 2 1 3 1arg min{ || * ' || (| | | | | | )}ED d df

p f h p b b bμ λ= − + + +  (12) 

where 

 1 2 3, , 2xx yy xyf b f b f b= = =  (13) 

After that, the augmented Lagrangian could be written as: 
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ρ
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+ − + + − + + − +
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in which ρ  is the penalty parameter. The problem could then be solved in a three-step 

iterative manner: 

i. Update kf  

 1 1arg min ( , , )k k k

f
f L f b u− −=  (15) 

ii. Update kb  

 1arg min ( , , )k k k
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b L f b u −=  (16) 
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and 2
kb , 3

kb  are updated in the same way. 

iii. Update ku  
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1 1 1
k k k k

xxu f b u −= − +  (17) 

and u2, u3 are updated in the same way. 
We then detail the process of updating kf  and demonstrate that Eq. (15) has an analytical 

solution. Using the Parseval’s identity [32], the problem in Eq. (15) can be re-written in 
Fourier domain: 

 
   

        

2
3 3 2
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1 1 2 2 2 2 3 3 2
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in which the symbols with tilde represent the Fourier transforms of the original signal.   is 
element-wise product. Note that we previously defined 3 ( , , ) ( , ) ( )d y yh x y e h x y eδ=  and

3 ( , , ) ( , ) ( ),d y yf x y e f x e yδ=  So we have  
3 ( , , ) ( , )

yd x y e x yh k k k h k k= and 

 
3 ( , , ) ( , ).

y yd x y e x ef k k k f k k=  In this way, the right-hand-side of the above equation can be 

viewed as a function with the variable of ( , ),
yx ef k k  and the analytical solution is 
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    2 2 2 2| | | | 4 | | | ( , ) |xx yy xy x y yD h k k dk
μ
ρ

= ∇ + ∇ + ∇ +   (21) 

Finally, ( , )f x y  is obtained by taking the inverse Fourier transform of ( , ).
yx ef k k  

The reconstruction software is available from ref [33]. Note that it is necessary to choose 
proper parameters μ  and λ  in Eq. (12), so in following experiments we use the grid-search 

technique to determine the best parameters with image sharpness as the metric [34]. All the 
computational reconstructions are performed on a personal computer with Intel(R) Core(TM) 
i5-7500 CPU and 16.0 GB RAM. One iteration described in Eqs. (16)-(18) takes ~0.6 seconds 
for a 650 × 400-pixel image, and the algorithm takes tens of iterations to converge. 

4. Simulation results 

After building the algorithm, we evaluate the performance of the proposed methods via 
numerical simulations (Fig. 3). We show the reconstructed images of the microtubules by 
WD, CSD and ED, in Figs. 3(b)–3(d), respectively. We split the original microtubule image 
into columns, then convolve each column with the PSF h to generate{ '( , , )}.yp x y e  A 40 dB 

Gaussian white noise (Peak Signal-to-Noise Ratio) is added to simulate the real experiments. 
After generating{ '( , , )},yp x y e  ,WDp  CSDp  and EDp  are then calculated via Eqs. (1), (2), and 

(4), respectively. We could see that EDp  shows the lowest background among ,WDp  CSDp  and

EDp . 
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Fig. 3. Numerical simulation results. (a) A ground-truth (GT) image of microtubule used in 
simulations. (b)(c)(d), images retrieved with WD, CSD and ED, respectively. (e)(f), images 
reconstructed with Hessian deconvolution enhanced WD and CSD, respectively. (g) The 
intensity along dashed lines in (a)-(f). (h) Structural Similarity (SSIM) Index of reconstructions 
by all the methods under different noise levels in Peak Signal-to-Noise Ratio (PSNR). Black 
dashed line: threshold for the acceptable reconstruction. 

We also conduct deconvolution with Hessian regularization on the WD and CSD to show 
that the proposed ED technique still has the best performances, as shown in Figs. 3(e) and 
3(f). For WD, the same PSF as in ED is used, while for CSD 1D deconvolution is performed 
on each detected slit since slit detection is performed in the CSD. The 1D PSF is formulated 
by selecting the central line of the fitted PSF. By comparing Figs. 3(b) and 3(e), we could see 
that the improvement of deconvolution is obvious. However, deconvolution still could not 
handle the serve crosstalk caused by WD. While CSD could also improve its performance 
after deconvolution (Figs. 3(c) and 3(f)), the loss of signals by involving confocal slit would 
affect its final performance. On the other hand, the proposed ED technique is insusceptible to 
both the crosstalk from tissue scattering and the loss of signals induced by confocal slit based 
spatial filtering, thus it could retrieve the best performance after the same deconvolution 
process. 

We quantitatively measure the width of retrieved microtubules achieved with these 
methods and could see that pED resembles ground truth the most, which demonstrates great 
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advantages of our ED-LTFM in strong scattering and noisy conditions. We also label the 
structured structural similarity index (SSIM) of each method in Figs. 3(b)–(f), which is 
widely used to evaluate the similarity of the reconstructed images to the ground truth [35]. 
The result with ED is 2.1 times better than that with CSD and 15.5 times better than that with 
WD in terms of the index value. In Fig. 3(h), we compare the reconstruction SSIM of all the 
methods under different noise levels. Using 0.5 as the reconstruction SSIM threshold, ED-
LTFM can extend the tolerable noise range by ~8 dB compared to the second best method 
(CSD-deconv), which explicitly shows the outperformances for our methods. 

5. Experiments 

5.1 Optical configuration 

 

Fig. 4. Optical configuration of the ED-LTFM. EOM, electro-optical modulator; HWP, half 
wave plate; Cyl. Lens, cylindrical lens; D, dichroic mirror. Inset 1: In our setup, the excitation 
line is fixed and the sample stage moves to achieve line scan. 

Figure 4 shows the optical configuration of ED-LTFM. We use an 80 MHz, ∼120 fs laser 
(Chameleon Discovery, Coherent) for two-photon excitation at 920 nm, and a following 
electro-optical modulator (M3202RM, Conoptics) to control the laser intensity. The laser 
beam is expanded to ~5 mm with a telescope (L1: f = 60 mm, L2: f = 150 mm), and then 
scanned in the vertical direction with a one-dimensional galvanometer (GVS211, Thorlabs). 
The beam is focused to a thin line on the surface of the diffraction grating (Edmund Optics, 
830 lines/mm) with a cylindrical lens (f = 300 mm). The incident angle to the grating is ∼50° 
to ensure that the central wavelength of the 1st diffraction light is perpendicular to the grating 
surface. The spectrally-spread pulse is collimated with a collimating lens (L3: f = 200 mm), 
so that the expanded beam fulfills the back pupil of the objective (25 × , 1.05 NA, water 
immersion, Olympus, XLPLN25XWMP2). A line-shaped laser beam, around 80 µm in 
length, is formed at the focal plane of the objective. An epi-fluorescence setup is built-up for 
image acquisition, including a dichroic mirror (DMSP750B, Thorlabs), a bandpass filter 
(E510/80, Chroma), a 200 mm tube lens (L4, TTL200-A, Thorlabs), and an sCMOS (Zyla 5.5 
plus, Andor). Three-dimensional imaging is performed by axially moving the sample stage 
(M-VP-25XA-XYZL, Newport). 

In wide-field detection pED, the camera keeps open during the line-shaped beam scans the 
sample. To capture { '( , , )},yp x y e  we park the beam in the center of the field-of-view (FOV) 
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and translate the sample stage to finish the 1D scan, which will simplify the experimental 
setup for extended detection and make the imaging field unlimited by the FOV of the 
objective. In this case, the camera captures a 650-by-200-pixel image at each stage position 
and the total { '( , , )}yp x y e  stack is formed by 400 captures. To mimic the confocal slit 
detection, we use the center signal of the captured image stack { '( , , )}yp x y e  to recover 

( , ).CSDp x y  pED is calculated from the proposed reconstruction algorithm. For fair 
comparison, the exposure time of each row in all three cases are the same (50 ms). Note that 
the excitation line is along x axis, the same as the derivation above. 

5.2 Images of fluorescent beads 

 

Fig. 5. Images of 3 μm fluorescent beads with WD in (a), CSD in (b) and ED in (c). (d) and (e) 
show the intensity fluctuation along dashed lines in (a), (b) and (c). Scale bar: 5 μm. 

We first demonstrate the enhanced performances of the proposed ED technique via imaging 3 
µm fluorescent beads (T14792, Thermo fisher) under 300 µm scattering phantom (non-
fluorescent beads embedded in 2% solution of agar). Figures 5(a)–5(c) show the maximum 
intensity projection (MIP) along z-axis (MIPs of a 10 μm x-y stack) of the beads via WD, 
CSD, and ED, respectively. We could see that beads are seriously blurred under WD, while 
CSD could effectively reduce the blurriness along y-axis compared to WD but it helps less 
along x-axis. On the other hand, ED could effectively reduce the blurriness along both axes. 
We further quantitatively compare the blurriness reduction of these three methods via 
measuring the captured beads profiles along x and y-axis in Figs. 5(d) and 5(e), which 
strongly suggests that the proposed ED technique is effective for reducing scattering along 
both axes. 
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Fig. 6. Validation of PSF invariance across the whole FOV. (a) MIP of neurons along z-axis of 
a 13-μm-thick image stack (80-92 μm under the dura) acquired with the ED. To test the PSF 
invariance, we choose three targets across the whole FOV for fitting, which are marked by the 
white arrows. (b)(c)(d) Scattering profiles and the fitting results at the target locations in (a). 
(e) Plotting the fitting results at (b)(c)(d) in one figure. It could be seen that the results are 
highly overlapped, demonstrating the PSF is invariant. Scalebar: 10 µm. 

5.3 In vivo imaging of Thy1-YFP mice 

Then we demonstrate the performance of ED-LTFM in in vivo imaging of living Thy1-YFP 
mice (JAX No. 003782). After craniotomy, we conduct acute imaging of neurons in the 
cerebral cortex with the living mice under anesthesia [36] (all procedures involving mice 
were approved by the Animal Care and Use Committees of Tsinghua University). 

5.3.1 Validation of the PSF invariance 

So far, we have assumed the shift-invariance of scattering PSF in imaging modelling and 
reconstruction, which is not obvious considering that the tissue structures and properties are 
complicated. To validate this assumption, we fit PSF with the proposed H-G model at 
different locations, as shown in Fig. 6(a). We choose 3 targets for the fitting, draw the 
intensity fluctuation around the target, and search the best fitting parameters ( ,g),α  as shown 

in Figs. 6(b)–6(d). It is found that the fitted parameters vary little in different locations, as 
shown in Fig. 6(e). The results suggest that the PSF is near shift-invariant across the whole 
FOV, thus the deconvolution process of our proposed algorithm is feasible. We deduce that 
the observed shift-invariance of the PSF is due to: 1) Scattering properties vary across 
different regions of the mouse brain [37], but these properties are highly similar locally [38]. 
2) When imaging depth goes beyond the mean free path (<50 μm for emitted photons in our 
case [39,40]), emitted fluorescent photons will experience multiple scattering, which will lead 
to similar scattering PSFs across the FOV. 

5.3.2 ED outperforms WD and CSD in neuroimaging 

We further compare ED, WD and CSD in in vivo neuron imaging. In Figs. 7(a)–(c), we show 
the maximum intensity projection (MIP) of neurons along the z-axis of a 13-µm-thick image 
stack (80–92 μm under the dura) acquired via WD, CSD and ED, respectively. For precise 
comparison, we show the zoomed-in view of the captured images in Figs. 7(d)–7(f). As 
expected, the dendrites are blurred in WD due to the strong scattering, while CSD techniques 
help to eliminate the crosstalk induced by scattering along y-axis, and ED effectively 
eliminates the crosstalk along both x-axis and y-axis. In Fig. 7(j), we show the signal 
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improvement of ED over that in WD and CSD by quantitatively comparing intensity along 
the dashed line in Figs. 7(d)–7(f). 

 

Fig. 7. Comparison of different techniques in in vivo deep imaging of neurons. (a)(b)(c) MIPs 
of neurons along z-axis of a 13-μm-thick image stack (80–92 μm under the dura) acquired with 
the WD, CSD and ED, respectively. (d)(e)(f) Zoom-in views of lateral area marked by the 
dashed box in (a), (b) and (c), respectively. (g)(h)(i) MIPs along y-axis of a 10 μm thick x-z 
stack [marked by the dashed box in (a)(b)(c)]. The MIPs of x-z stacks are shown with bilinear 
interpolation along z-axis to equate the lateral and axial pixel sizes. (j) Intensity profiles along 
the indicated lines in (d)(e)(f). (k) Intensity profiles along the indicated lines in (g)(h)(i). Scale 
bars in (a)(b)(c) are 10 μm, in (d)(e)(f) and (g)(h)(i) are 3 μm. 

In Fig. 7(k), we also show that the proposed ED technique could help improve the signal 
contrast along z-axis via MIP along the y-axis of a 10 μm-thick x-z image stack [labeled by 
the dashed box in Figs. 7(a)–7(c)] in Figs. 7(g)–7(i). It can be seen that the improvements of 
ED-LTFM are obvious. 

5.3.3 Hessian regularization in ED helps to reduce reconstruction artifacts 

We also verify the improved performances of Hessian regularization. For comparison, we 
conduct ED with and without Hessian regularization in the deconvolution step, as shown in 
Fig. 8. We could see that without regularization, the ED deconvolution process amplifies both 
the noise and the signals (Figs. 8(a) and 8(b)). By carefully checking the details, we could 
find that ED without Hessian regularization generates more structures than that with Hessian 
regularization (Figs. 8(d) and 8(e)). We further check the result from CSD (which is free from 
any post-processing) and find that it matches well with the result from ED with Hessian 
regularization (Figs. 8(d) and 8(f)). In other words, ED without Hessian regularization 
generates artifacts in the retrieved images. The introduced Hessian regularization helps to 
reduce artifacts and maintain the reconstruction fidelity. 
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Fig. 8. Comparing ED reconstruction with and without Hessian regularization. (a) ED 
reconstruction with Hessian regularization. (b) ED reconstruction without Hessian 
regularization (ED no He). (c) CSD reconstruction, which is free from post processing. 
(d)(e)(f) Zoom-in views of the lateral area marked by white dashed boxes in (a)(b)(c), 
respectively. Scale bars in (a)(b)(c) are 10 µm, in (d)(e)(f) are 3 µm. 

 

Fig. 9. Comparison of different techniques in in vivo deep imaging of microglia cells and their 
dynamics. (a)(b)(c) MIP of microglia cells along z-axis of a 7-μm-thick image stack (172–178 
μm under the dura) acquired with the WD, CSD and ED, respectively. (d)(e)(f) Zoomed-in 
views of lateral area marked by the dashed box in (a), (b) and (c), respectively. (g)(h)(i), 
temporal color-coded MIP sequences of microglia cells along 30-μm-thick image stack (100–
130 μm under the dura) acquired with WD, CSD and ED. Scale bars in (a)(b)(f)(g)(h)(i) are 10 
μm, in (d)(e)(f) are 3 μm. 
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5.4 In vivo imaging of CX3CR1-GFP mice 

Finally, we demonstrate the performance of ED-LTFM in in vivo dynamical imaging of 
microglia cells in living CX3CR1-GFP mice (JAX No. 005582). In Figs. 9(a)–9(c), we show 
the MIP along the z-axis of a 7-µm-thick image stack acquired via WD, CSD, and ED, 
respectively, at the depths of 172–178 μm under the dura. To the best of our knowledge, no 
such penetration depths in LTFM has been demonstrated in vivo so far. We could see that the 
background noise by ED has been suppressed significantly compared to those by both WD 
and CSD. By selecting a small part of Figs. 9(a)–9(c), we could see that CSD eliminates the 
crosstalk along y-axis effectively but fails to eliminate the crosstalk along x-axis. The fine 
process could be recovered by ED effectively, which even could not be recognized in original 
WD images. We also image the “non-resting” dynamical movement of microglia cells over a 
total time of 16 minutes within a depth range of 30 μm. In Figs. 9(g)–9(i), we can see that, 
compared with the results from WD and CSD, ED can record the movement of the processes 
of microglia cells with fine details. 

6. Conclusion 

In summary, we propose a novel technique for overcoming tissue scattering in wide-field 
deep imaging by extended detection and computational reconstruction. Through both 
numerical simulations and in vivo imaging experiments, we have demonstrated that the 
proposed ED-LTFM can effectively enhance the penetration depth. Considering the line-rate 
of our sCMOS camera is about 2.2 × 105 Hz, it can enable 55 Hz imaging rate (faster than 
~30 Hz speed of typical point-scanning two photon microscopy with resonant galvo scanners) 
for a 650 × 400-pixel capture with a 10-pixel width extended detection, in which case a 
femtosecond laser of low repetition rate but high pulse energy should be used to ensure the 
SNR. Besides, since our PSF fitting technique relies on the detection of small sources, ED-
LTFM would work better for sparsely labelled tissues (in some cases, such as microglia cells 
in Fig. 9, the targets are inherently sparse). It is worth noting that ED-LTFM can also be 
integrated with other strategies, such as three-photon LTFM [20], adaptive optics based 
LTFM [22], and multiphoton multispot systems [24] to push the limits of imaging depth 
further in scattering tissues. 
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